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ON OPTIMAL HIGH-ORDER IN TIME APPROXIMATIONS
FOR THE KORTEWEG-DE VRIES EQUATION

OHANNES KARAKASHIAN AND WILLIAM McKINNEY

ABSTRACT. We show that the well-known order reduction phenomenon affecting
implicit Runge-Kutta methods does not occur when approximating periodic
solutions of the Korteweg-de Vries equation.

1. INTRODUCTION

In this paper we obtain optimal rate of convergence estimates in time for high-
order fully discrete approximations to 1-periodic solutions of the Korteweg-de
Vries (KdV) equation

(1.1)

0

u,+uu, +eu, =0, O0<x<l1, t>0,
u(x,0) =u (x).

These approximations are generated by a finite element process for the spatial
discretization and implicit Runge-Kutta (IRK) methods for the time-stepping.
As a class, IRK methods possess superior stability properties, enabling them
to handle many stiff nonlinear problems. In addition, many IRK methods are
such that at each step the computational work may be subdivided into sev-
eral independent tasks, allowing for parallel implementation on multiprocessor
computers; cf. [10, 11].

It is well known, however, that for some problems the observed order of con-
vergence of an IRK method is less than the optimal order. We remark here that
this phenomenon is not caused per se by a lack of regularity on the part of the
solution. A first allusion to this phenomenon may be traced to Crouzeix’ thesis
[6], where lower than the optimal orders are obtained for parabolic problems
with time-dependent coefficients; for numerical evidence we refer to [7] and the
references therein.

In the case of the KdV, in a previous paper [8], the order reduction was
avoided by the introduction of appropriate correction terms during the calcula-
tion of the intermediate values, in the case of two diagonally implicit methods
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of (optimal) orders 3 and 4. In this paper, we show that these modifications
are indeed unnecessary, and that the optimal orders can be recovered by exploit-
ing the fact that the solution is in the domain of adequately high powers of the
differential operator. This agrees well with the results of numerical experiments.
Our new approach consists of introducing, at every time level ¢", the function
u"t by applying the IRK method directly to (1.1). We observe, however, that
u"! s not actually computed but serves merely as a convenient intermediary
for the analysis. This generates two difficulties: First, we must establish that the
system of nonlinear (ordinary) differential equations obtained does indeed have
a solution which is sufficiently regular. Second, the fully discrete (computable)
approximations uZ“ must be compared directly to u"t! , a difficult task in
attempting energy type estimates, given that the difference of the two functions
is not in the finite-dimensional subspace.

The paper is organized as follows: §2 is devoted to preliminary material. In
§3, we successfully resolve the first difficulty mentioned above. We also obtain
bounds for #"*' in terms of the initial data #°. In §4 we obtain optimal
estimates for the local truncation error u"*' — u(t"“) in appropriate norms.
Using the stability properties of the IRK methods, we then estimate uttt -
uZ“ . The convergence of the fully discrete approximations is then obtained
by a simple argument. We note that in this paper we do not address issues
pertinent to the existence and uniqueness of the fully discrete approximations
{uZ} and to the convergence of Newton’s method for solving the nonlinear
algebraic equations, since these topics were treated in earlier works; cf. [2, 3,
8].

For the sake of simplicity, we drop the constant &, given that all the results
remain valid, with the proviso that the constants appearing in the estimates may
tend to infinity as ¢ approaches zero.

2. PRELIMINARIES
2.1. Some function spaces. For integer m > 0 andreal p, 1 <p < oo, we let
w™? =w"™?(0, 1) denote the usual real Sobolev spaces with norm ||-||,, .
For p = 2, the Hilbert spaces H™ = W™? have inner product (-, 3),, and
norm || -||,, . For m = 0 we shall let L? = H° and use (+5<)s || -1. We shall
also replace W*® and |- lo.oo Dy L™ and | - ||, , respectively.
We shall also use the spaces C” = C™[0, 1] of functions f such that

foons f(m) are continuous on [0, 1], equipped with the norm |||, . -
We shall say that f is periodicin C™ if fe€ C™ and fY(0)= fY(1), j =
0, ..., m. Furthermore, in view of the (compact) imbedding H” — C™',

m > 1 (cf, e.g., [1]), we shall say that f is periodicin H” , m > 1,if fe€ H"
and fY0) =91, j=0,...,m—-1.

For ¢ > 1 integer, we use /#" to denote the g-product H” x --- x H"
equipped with the inner product ((u, v)),, = ?:1(“;' , V;),, » and norm Ju||,, =

(X%, (u;, u;),)"" . In particular, we shall denote ((-, -)), by ((-,-)) and |-
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by || - || . We shall also use the spaces & = C" x --- x C"™ equipped with the
norm ul,, o, = max, <<, 4]l ; we shall denote |- Ty oo by |-l -

It was proved by Bona and Smith [4] that a unique global, periodic solution
u to (1.1) exists in H™, m > 2, provided the intial data u° s periodic in
H™ . Furthermore, 8’u/dt € C(0, t*; H™ ™) for 0 <" < oo and all j >0
such that m — 3j > 0, and
8'u

0
=l <enl,).

sup
0<i<t”

m—3j
We assume that #° is periodic in H™ for m sufficiently large to guarantee
the convergence results below.

2.2. The finite-dimensional spaces. Let 4 <r < N be integers and let 4 = 1/N .
Let S; denote the space of 1-periodic smooth splines of degree at most r — 1
defined on a uniform partition x;, =ik, i=0,..., N.

It is well known that if v is 1-periodic and sufficiently smooth, then there
exists a y € S, such that

m—1
210 Y K-l ,<ch"vl, ,, 1<m<r, p=2orp=co,
Jj=0

for some constant ¢ independent of 4, v, and yx.
In addition, elements of S; possess the following inverse property. there
exists a constant ¢, independent of %, such that for all y € S,’I

—(f—a —(a+1/2)
22 Wy <™y Ml oo < ™2l

0<a<p<r-1.

One may choose as basis the well-known “Bell” splines ¢,, ..., ¢, asso-
ciated with the nodes x|, ..., x, , respectively. For the analysis, we find it
more convenient to use a set of modified basis functions ¢, ..., §, used by
Thomée and Wendroff [12].

Let G denoted the Gramian matrix éij =h"'(¢,,$). G is symmetric,

positive definite; so G'* and G2 may be defined in the usual way. Let
(-, ), denote the following inner product on R

N
VW), =h) VW,
i=1

and ||V]|, the associated norm. We have (cf. [12])
2 2 N
(2.3) glVIZ< GV, V), <alVI: weR,
where g,, g, are positive constants independent of 4. We also have

N
(2.4) ||U;,||2 =(GV,V),, where v, = Z Vid, .

i=1
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Let v be periodic and sufficiently smooth; then the quasi-interpolant v, =
Ef\; | v(ih)é&i of v approximates v in the following way:

(2.5) v —,]l < ch|lo").

Let v € H N W»* be periodic. Using (2.1), (2.2), and (2.5), it can be
shown that

(2.6) 105 lloo < €Vl o +l,)5
cf., e.g., [2, p. 424].

2.3. The implicit Runge-Kutta methods. For ¢ > 1 integer, a g-stage IRK
method is given as a set of constants arranged in tableau form:

ap 4 | T
aql aqq Ta
b, b, |

Given the Initial Value Problem

/ *
y =f(t,y), 0<et<yt,
(2.7) { 0
y(0) =y,
IRK methods can be applied to generate approximations y0 y eens yJ as follows:

let k =t*/J be the temporal stepsize and let " = nk. Then

q . .
(2.8) Y=y kS Y,

i=1

where ¢! = t" + kt,, and where the intermediate values y™' are given by the
coupled system of equations

. q . .
(2.9) YUty kY a f( 0", =1,
j=1

We shall assume that these methods satisfy certain stability and consistency
conditions. Indeed, it will be required that

5) {biZO, i=1,...,q,

the g x g array m;; = a;;b; + aj,.bj - b,-bj is nonnegative definite .

The above condition, known as algebraic stability, is stronger than that of A-
stability.
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The consistency conditions are given by

- +
Jj=1
q | ‘L'1.+1
(C) Za,.jzj=l;1, i=1,...,q,1=0,...,p—1,
j=1
z ! bj I+1 .
(D) Zaij‘tibi=l+1(1—tj ), j=1,...,q,1=0,...,r—1,

for some integers v, p, r > 1. We assume that

(2.10a) v<r+p+1,
(2.10b) v<2p+2.

The consistency relations may be expressed, with the help of the g-vector
e=(1,..., l)T, as

BTle=— | 1=0,.. -1,
l+1
1+1
l T e
AT e = i1 [=0,...,p—-1,
bTTIA—i(I—TIH) 1=0 r—1
_l+1 B - LR ] B
respectively, where 4 = (q;;), T = diag{z,,...,7,},and b= (b, ..., bq)T

The existence of the numerical approximations is obtained by assuming the
following positivity property:

P { A is invertible and there exists a positive diagonal matrix D
such that x’ Cx > 0Vx € R?, x £ 0, where C = DA™'D™".

In particular, let the constants «,, a,, B,, B,, 7, 7, be given by

0<al$xTCx, xTCySaz,
0<p <x'c'x,  x'cly<g,,
O<yl§xTDx§y2, Vx,yewaitthx=yTy=1.

We next give the two- and three-stage methods of some families of IRK
methods.

(i) Gauss-Legendre methods. These methods form a particularly interesting
class in that the matrix M in (S) vanishes identically, a fact that has important
implications such as the existence of discrete conservation laws and mild growth
of the discretization error. For this class, v =2¢q, p=r=q.
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2-stage method 3-stage method
5 80—24vT15  50—12v/15 | 1 _ /15
1 1 1 1 ] 36 360 360 27710
4 172312723 5041515 2 50—15v/T5 1
L1 1 Ly 1 360 9 360 2
4 23 4 223 50412V/15  80424/T5 s 1, VB
1 1 ‘ 360 360 36 2 10
2 2 5 3 5
18 18 18

(ii) Radau 1IA methods. These methods are characterized by 7, = 1. Also,
v=29q-1,p=q,r=q-1.

2-stage method 3-stage method
88—7v6  296—169v6 —2+3v6 | 4—v6
360 1800 225 10
296+169v/6 88+7v/6 —2-3v6 | 4+6
1800 360 725 10
16—v/6 16+v6 1 1
36 36 9
16—v6 16+v6 1
36 36 9

Both of the families above are infinite, in the sense that arbitrarily high-order
methods can be constructed.
(iii) Diagonally implicit methods.

2-stage method 3-stage method
Y 0 0 Y
1 1 1 1
tss 0 |atas L 0 1
SO R R 27 Y 2
V3 2 T 2v3 |2 23 2y 1 -4y y 1—vy
N i

1 _ 1
244 —y)? ! 12(5-9)7  24(-)

where y = % + % cos % is a root of the equation 24x* —36x2+12x-1=0.
For the two-stage method, v = 3, p = r = 1. For the three-stage method,
v =4, p=r =1; hence (2.10a) is not satisfied. This will necessitate a
slight modification in the estimation of the local truncation error. In [8] these
two methods were applied to the KdV equation with appropriate modifications
of the intermediate equations (2.9). Optimal-order rates of convergence were
then established. The new machinery adopted in this paper reveals that these
modifications are unnecessary.

Concerning the application of IRK methods to the. Initial Value Problem
(2.7), a comment concerning the local truncation error

8n+l — k—l(yn+1 _y(ln+l))
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n+1

is in order. y is defined by taking y" = y(¢") in (2.8) and (2.9). Sup-
pose that the IRK method satisfies (B), (C), and (D) together with (2.10a) and
(2.10b). Suppose also that f is sufficiently smooth and that

(2.11) (2, ) = f(t, »,)| < Ly, —y,| Vtel[0, ], ¥y, »,.

Then (cf. [5, 6]) there exists k, > 0 such that |¢""'| < ck” for k < kg,
where ¢ is a constant independent of k, but which may depend, in general
exponentially, on L.

When (2.11) does not hold, or when L is large, such bounds on the local
truncation error do not hold or become useless. Indeed, in certain instances a
reduction in the order is observed (cf. [7] and the references therein).

2.4. The fully discrete approximations. Motivated by (2.8) and (2.9), we define
the fully discrete approximations {”Z}Lo to the solution u of (1.1) as fol-

lows: let =, u° be any conveniently chosen element of S,’l , €.8., L’ -projection,
interpolant, etc. that satisfies

(2.12) u® =, < ch”.

Typically, the constant ¢ depends linearly on ||u0||r. Let u2 = nhuo

n=0,...,J-1,

. For

q
(213) @ 0 =, ) kS b vyt x) Vxes),
i=1

where

n,i n,j n,j
(2 14) (uh ) ) uh’ kZaU uh uhx +uhxxx’X)

vxes,’,, i=1,...,q.

In [8], optimal, i.e., O(k"), rates of convergence were obtained by adding ap-
propriate correction terms to the equations (2.14) in the case of two diagonally
implicit methods with v = 3 and v = 4. In so doing, however, the schemes ac-
quire a multistep nature, which places them outside the family of (single-step)
RK methods. In a later paper [3], convergence rates of p +2 = g + 2 were
obtained for the class of Gauss-Legendre methods [5]. The analysis, however,
applies to other methods as well.

Using a different approach, we shall prove below that the full rate v can
indeed be obtained. In particular, for the Gauss-Legendre methods we have v =
2q, the maximum for a given number ¢ of intermediate values. In addition,
for these methods m,; = 0, which implies that ]l = ||7thu0|| ,n=0,...,J,
a discrete analogue of the second conservation law of the KdV equation.
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3. A SYSTEM OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

In this section we show that the IRK methods applied to the solution of (1.1)
at a given time " yield a unique set of intermediate values {u""'}7_, given by

. q . . .
(3.1) W=l = kY a "y v u)),  i=1,0,,
j=1
from which #"*! is given by
q . . .
(3.2) W™= u(l") kY bl vl

We also show that {u""‘}?:1 and u""" possess the same degree of smooth-
ness and periodicity as u(t"). Using this, in §4 we shall obtain the estimates

[l — u(t"+1)||0’p <ck’™' p=2, 00, where "' =" +k.

Throughout this paper, we shall adopt the following notation: let V =
(P v,)T and W = (w, ..., w,)T be two [-tuples; by VW we shall
mean the /-tuple (v,w, ..., v,w,)T. For an / x / matrix M, MV shall de-
note the /-tuple with Zﬁﬁl M, v; as ith component. Also, V, shall denote
(Vi eees v,x)T.

With this notation, we may express the equations (3.1) as

/ 4
(3.1) U=eu(t')-kAUU, - kAU,
where U= ("', ..., u" 7 and eu(r") = (u("), ..., u(/")".

Some inequalities that will be used frequently are contained in the following

Lemma 3.1. (a) Let v € H'. Then
2 2

(3.3) vl < l0lI" + 2]l v,

(b) Let v € H? be periodic. Then
(3‘4) ”vx”w S “vxx” *

(c) Let ve H 3 be periodic. Then
(3.5) 1Vl S NVl < 10yl s

2

(3'6) ”vx”oo S ”vx” ”vxx” S “'U” ”vxxx“ *

(d) Let V, We#Z 3 be periodic. Then

) 2 2
(3.7) VWA <IvIFIwiiw,

Proof. (3.3) is standard; (3.4) and (3.5) are proved easily using integration by
parts and periodicity.

xxl" °
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To prove (3.6), note that since v is periodic, v, (a) =0 for some a € [0, 1].
We may assume without loss of generality that @ = 0. Then, for x € [0, 1],

v3(x) = 2 / " (0 dt = -2 / o (" () dt.
It follows that
1
2(x) < /0 W' 011" ()] dt < v, v,

To obtain the second inequality of (3.6), we integrate by parts to get

1
2 "
v, | =—/0 (0" (0 dt < o]l Jv,_.|.
Similarly,
1
2 / "
el == [ 00" O d1 < o] o).

The desired inequality now follows by multiplying the last two inequalities,
simplifying, and using the result in the first part of (3.6). To prove (3.7), we
use (3.6) and the discrete Schwarz inequality:

2
q q q
2 2 2 2
Vvl =lev,~w,~xll < levill [ lloe < (levill IIW,-XIIOO)
< lew el < VPN TN, ]l ©

Lemma 3.2. Let W € €™, m > 0, be periodic and assume A satisfies (P).
Then, for k #0, the (linear) system

(3.8) V+kAV

xxx —

has a unique periodic solution in gm3

Proof. To show the ex1stence of a unique solution to (3.8) in &™ with
vy =1V, j= , m+2, we need only show that the homogeneous
system V +kAV, = 0 has no nontrivial (£ 0) solution (cf. [9, Theorem 1.1,
p. 408]). Indeed we get

(3.9) C(DV)+kDV___=0,

XXX

where C = DA™'D™" is positive definite. Multiplying by DV and integrating,
we get ((C(DV) DV)) = 0, which forces DV = 0. Furthermore, writing
Vo =k "4~ (W - V), we see that V"*(0) = v"*)(1). o

Remark 3.1. In view of the continuous imbedding #™*' — &" — #",
> 0, the solution V of (3.8) is periodic in #™" if W is periodic in
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#™ . Furthermore, from V.
. .. 4
periodic in #"** .

. =k ' (W—V),weseethatVisalso

XX

Lemma 3.3. Let f € #™', Ue#™, m >3, be periodic and suppose that A
satisfies (P). Let the constants M,, M,, M, and k, be given by

2a,

= —-IIIDf I

M3 1\ 2
My = 2 S (B ) + g DLl
171

IDf, ||| ( >
M — XXXX MM
} o B 5171 hot
o,y
ko= —1L1
0 2/MM,

Suppose that 0 <k < k,, |DU|| < M,, and |DU.
a unique periodic solution V in Z o

| < M, . Then there exists

XXX

(3.10) V+kAV,, = f-kAUU,
satisfying

1DV < M,
(3.11) 1DV, < My,

1DV sl < M.

Proof. Since U € #™, it follows that U € ™' ; hence UU, € "t C

7 Thus, by Lemma 3.2 and Remark 3.1, there exists a unique periodic
vexrm! satisfying (3.10). To prove the first estimate in (3.11), we rewrite
(3.10) as

C(DV)+ kDV,

XXX

=CDf-kDUU,,
from which it follows that
(C(DV), DV)) + k((DYV,

xxx?

DV))=((CDf, DV)) - k((DUU,, DV))
and thus, by periodicity and (P),
2
o IDVI" < a, IDSIIDV ] + £IDUU, | IDV ],

and hence k
[0
1DV < alIIIDf I+ —IDUU].
1 1

Now using (3.7),

M 32 12
1DV < 7‘ + — |||DU||| / IDU, .| /
l 1
3/2, 12
<%+————le M, <M.

- 2 ¥,
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Also V — f=-kAV, . —kAUU, . Hence

XXX

(CD(V = 1), DV = [))) = k((DV, ., D(f = V)))
+k((DUU,, D(f - V).

So
a ID(V = )P < kIDUUID(S - V) + k(DV,,,, DS)).

Moreover,
(DVixx» D)) ==((DV, Df ) =((D(f = V), Df )
Hence,
(3.12) a |DV = ) < k(IDUU |+ [IDS, D) -
From (3.10),
kc~'DV, . =D(f-V)-kC™'DUU,.

XXX

Hence, from (3.12) and (3.7),

1
BlDY . Il < £ID(f = V)i + BIDUU|

1 1
(3.13) < a—llllDfxxxlll + (/32 + a_l) |DUU |
1 1 M3/2 M1/2
< — - '_'___ .
< IS+ (B ) 2
Hence,
1 1 1 M M,
< ~ I .
1DV, d < DSl + 5 (B + ) T B,
To estimate |DV,, |l differentiating (3.10) and proceeding as above, we
obtain
Now

q

q
liouu,) I° =Z Id (20, I Z 14t )+ N1t 10, 1)

q
2
Z il 124l oo + 11t ll o 124l o)™

Then, using (3.4), (3.5), and (3.6), we get

2

(3.14)  (DUU,) | < 2IDUJ U, Ml < —IIIDUIII IDUycll < 5-M M, .
1

XXX |ll XXX
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Hence,

DV, Il < ﬁmDAmm+ (m )AmM M,.

This concludes the proof. O
We are now in a position to prove the following

Theorem 3.1. Let f € 7 Mt m > 3, be periodic. Suppose A satisfies (P),
and let the constants M,, M,, M;, k, be as in Lemma 3.3. There exists a
constant 0 < k; < k, such that if k < k,, then there exists a periodic solution
U in #™" 10

(3.15) U+kAUU, +kAU, = f
satisfying
(3.16) WUl Sc=clfllpyy), m=3.

Furthermore, there exists a constant 0 < k, < k, such that if k < k,, then the
solution U of (3.15) is unique.

Proof. Consider the sequence {U j} >0 generated by

{Uf+l+kAUj+l xx = = kAU U, Jj=0,1,...,
Uy=0

Note that trivially U is periodic in Z ml , IDUyll £ M, and | DU, Il <
; by Lemma 3.3 and Remark 3.1, U, ex1sts uniquely and is periodic in

V4 ’"“ . Furthermore, |DU,|| < M, and |DU,,, |l < M,. This argument may

Ixxx

be used repeatedly to yield a well-defined sequence {U i } >0 For j >0, U f is
periodic in #™*"' and satisfies ||D Jxxxxm <M.

Now if U. = U*+1 for some j* > 0, then UJ.‘ is a solution of (3.15),
since U- € Z’” c#. Otherwise, the sequence {Uj} >0 is infinite and is

bounded in #*. Since #* is compactly imbedded in &3 , We can extract a
subsequence {U j,} which converges in %* to some U . The latter must indeed
satisfy (3.15). To see this, it is sufficient to show that {Uj};.:o is Cauchy in

#' . Indeed, from previously used techniques, it follows that

1/2 .
WU, ~Ul, kU, -U_\l,, J=1,2,...,

for some ¢ = ¢(||fl|;) . Thus, the map U; — U,,, is a contraction in #' for
k sufficiently small.
To show uniqueness, assume the existence of two solutions U, and U, of
(3.15) and let E =U, — U, . Then
E+kAE = -kAEU, —kAE U,
from which we obtain

((CDE, DE)) = —k{((DEU,_, DE)) - 3(DEU, ., DE))}.

2x Ix?
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Hence
o IDEI® < k(10 oo + 1T, D )IDEY .
Uniqueness will follow, for k sufficiently small, from the estimate
(3.17) 1U Mo < c=cUlfN3)
for periodic solutions U of (3.15). Indeed, rewriting (3.15) as
CDU +kDUU, +kDU,,, =CDf,
multiplying by DU and integrating, we first obtain the estimate

(3.18) Nul < cllfi-
Now letting ¥ = U 1in (3.13) and using (3.7), we obtain

3/2 1/2
MU el < el il + cNUUN < el fe l + U mlll ;

from this, and using (3.18), it follows that ||U . [l < c(lfll;); (3.17) now fol-
lows from (3.18) and (3.6).

We now establish (3.16). From (3.11) it follows that |U|l, < (|l fll,)
0, 3, 4. So, as an induction hypothesis assume that

(3.19) 1ol <cAy), 1=3,....,s<m.
We next prove that as a consequence of (3.19),

(3.20) I/ =Ull; <kcAMys),  J=0,...,5-2.
Differentiating (3.15) j times, we get

(3.21) cpU - /) = —kDUU,)Y — kDU

Multiplying by D(U — f)") and integrating, we get
(o - 1", b - 1) = k(WU DU - 1))

— k(DU - N, DfUy).
Hence,
(3.22) U = NN < ckIDOU)| + cklDf V).

Using Leibniz’ formula, from (3.3) and (3.19) it follows that

J
j k i—k+1
IDWUHN <> IR U™y
k=0
5C(|"fmj+1), ]=0a’s_2a
(3.20) now follows from (3.22) and (3.23).
Again differentiating (3.15) s — 2 times, we get

(3.23)

c'pu*V = lp(f-u)*? - c'pwu,) Y.
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Multiplying by DU ¢+ and integrating, we get
(3.24) 10 < 10 - O 2+ el wu) ).
Using (3.20), (3.23) in (3.24), we get

+1)
101 < el -
This concludes the induction argument and the proof of the theorem. O

In the sequel, we shall take f = eu(t"). It follows from (3.2) that u"" =
(1=b"A7"e)u™) +b T47'U . In view of the estimates (3.16) and the a priori
estimates on the solution # of (1.1), we have

0
(3.25) "M, WO, < c(lelll,), — m>4.

4. CONSISTENCY, STABILITY, AND CONVERGENCE

In estimating the local truncation error |Ju(f""') — «"*'||, we introduce the

set of functions {a,.j(x)} ,i=1,...,q, j=0,..., v, defined recursively by

a,, =u(t"), i=1,...,q,
q ! "
(4.1) @1 = T la {Zm Oa_]majl m+a }’
i=1,...,q, [=0,...,v—1.

Here (') denotes differentiation with respect to x .

Note that if u(¢") € C™ is periodic with m > 3v, then a,,

ij is periodic in

C" ¥ fori=1,...,q,j=0,...,v.
Lemma 4.1. Assume that (C) holds together with (2.10b). Denoting the vector
(s ens aqj)T by a;, with D’u = (8’ /ot yu(x, 1|, we have
T'e . .
(4.2) aj=T!eD,Ju, j=0,....p, ifp<v,
P
(43)  a,, =21 Cp! ifp<v-1,
AT e I+l
Q= I ——D, u
A 1 i Tle D" Dl—m '
_Z 1- N = T =yt | P ¥
(4 4) m=p+1
) p A Tm ! Tle D[—m l; Dm
-2 ! = T (T = m)l o ¥
m=0

l
—A[a"’—zl—,‘iufu'”l, I=p+1,...,v—1, ifp<v-2.
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Proof. Obviously, (4.2) holds with j = 0. Suppose it also holds for j =
0,...,/<p-—1. Then, using Leibniz’ formula,

z ! T;n T[ " I—m ! ///
ai,[+1=_Zaij E D u(l_ )D 1|D

1 d I m 1+l d
=—I—Z uu )+ D,u }— E
j= =
‘l'l+l I+1u i1
(l+1) b - "“’q’

using (1.1) and (C). We also obtain (4.3) in a similar manner.
Now using (4.2) and Leibniz’ formula, in view of v <2p +2,

i TI'—m .
{ 2 iR ¥

m=p+1

Qe =

Il M-&

m
"
+Z Dua11m+aﬂ}
0
m ‘C[ m

q ! !
m I—m LN
-y au{ > L’Dtu(l_ )D u+l—’Du

m=0

Pl

" tl—m

_] I-m 1

+ Z [ D u} _(l—m)!D‘ u
m=p+1

I—m

T; I-m 1
a]l m U‘i—m)—‘Dt mu ]

Now (4.4) follows from (1.1). O

As we shall see below, the a’s are the coefficients of the expansions of the
intermediate stages #"'' in powers of k, up to order v . In view of (C), the
a’s are, up to order p + 1, time-derivatives of u at ¢ = ¢". This ceases to be
the case from p +2 to v. However, using (B) and (D), it will be shown below
that appropriate linear combinations of the «’s are again time-derivatives of
u . We make this precise in the following

Lemma 4.2. Assume that (B), (C), (D), (2.10a), and (2.10b) hold. Then for each
1=0,...,v-1,

m
+Z Du
mO

1
" j [ m
+ [aﬂ il -+ D,u

!
(45) bTTSal=lT(}——f—t;;_—1) VS=O,...,V—1WithS+lSV—1.
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Proof. Assume 0</<p, 0<s<v-1 with s+/<v-1. From (4.2) and
(B),
T sTle rT e Dlu
=b'T =pTl_Cply=_1*

b'T oy = b' TS Dju=b" =D = et
Nowlet /=p+1and 0<s<v-—1 with s+p+1<wv-—1. It follows from
the inequalities » <r+p+1 and s+p+1 <v —1 that s <r— 1; hence,
using (B) and (D), we obtain from (4.3)
_ bTTSATperH 11

_ T S+1\ 4p +1
- ____p. u_ﬁs——_i_lb(I—T )T eD!™" u

{b Tp bTTs+l+pe}D:J+1u

b T a

(s+1)

_ 1 { 1 _ 1 } +lu

T (s+Dptlp+l s+p+2)T
Dp+l

(p+1)(s+p+2)

We now complete the proof using an induction argument: assume (4.5) holds
up to some /, with p+1 </ <wv-2. From (4.4) we have for s =0, ...,v -1
with s+/+1<v-1,

bTTAT'e 141
—l|——D, u

Im !
Te m I—m 1
- Z b TA[I_ %~ =il u]Dt U

—p+l

T s
b Ta1+l=

T[e I—m 1
_Zb TA|: a,m th u]D’"u

m Te 1 m
n -t

-b TA[ — ——D,u

As before, s <r— 1. Hence, using (D) and (B),

BT AT e = - T NHT'e
1 Tl T ps+1+l 1
s+1{b e-b } (I+D(s+1+2)°
thus
@) bTTSATIeDmu _ D'y
I} ! (+DN(s+1+2)°

The result will now follow from the fact that the second, third, and fourth
terms on the right side of (4.6) vanish. We consider only the second term. From
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(D) and (B), for p+1<m</,
b7

T I- I\ pl—
b T AT "a, = +1(I—TS+ )T "a,,
1 T 4 s+l—m+1
=—4—_—{b T'" m—0 T a,,}
1 D"'u D"'u
Ts+1 |\ ml(l+1) ml(s+1+2)

_ D"u
Tmll+ D (s+1+2)°

As before,
1

I+ 1)(s+1+2)°
So indeed the second term is zero. 0O

pTTSAT e =

We have
Corollary 4.1. Under the conditions of Lemmas 4.1 and 4.2,
D[
(4.8) e a, l' , =1,

Proof. For [=1, ..., p, using (C) and (B) and (4.2), we get

—1Te _lATI_le / _Dfu
- Du=b"4 TP =T

For [ =p+ 1, from (4.3) and (B),

b4 e, =b"4

T D Dp+l
bTA_lapH:b_];—eDfH“: ()
p! (p+ 1)
For I=p+1,...,v—1, we get from (4.4)
Tl
T —1 b"T'e i+1
b4 a, = 7 ——D, u
1 m !
T'e m I—-m 1
_ ;lb [(1_ '"___m!(l—m)!D‘ u}Dt u

Tle I—m 1 m
_Zb [m,a, ’”___m!(l—m)!D‘ u}Dtu

" Te [ m
—b l —TDtu ]

Using (B), the first term on the right side gives Dﬁ“u/ (I+ 1)!. On the other
hand, the second, third, and fourth terms vanish in view of (4.5) and (B). O

We now consider briefly the special case of the 3-stage diagonally implicit
method, for which, as we recall, 2p +2 =4 but r+p + 1 = 3. We need only
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verify that b4 e 4= D;'u /24 . That this identity indeed holds can be seen by
using Lemma 4.1 in conjunction with the following three identities:

b TATe =1/8, b AT’e=1/12, b A*Te=1/24.
In the next result we estimate the local truncation error.

Theorem 4.1. Suppose that (3.25) holds with m > 3v +4. Suppose also that (B),
(C), (D), (P), and (4.8) hold. Then there exists k* > 0 such that if k < k™,

(4.9) lue™"y = u™ )y, < k™', p=2and p=oo,

where u"™" is given by (3.2) and c is a constant independent of k .
Proof. Let U = (u™', ..., u" %" and {o}, i=1,...,9,j=0,...,v,
be given by (3.1) and (4.1), respectively. Let e"' be given by

(4.10) W =S Ky, i=1,...,q.
1=0
Using (4.10) in (3.1), we get for i=1,...,¢
v ! )
Zk ai,+en"
1=0

q v ] v A
j=1 1=0 =0

v nm
+(Ek1aﬂ+e"’j) }
q v—1 ! =
=u(t")—k2a,.j{ K S0,
=i m=

v
v ’ I m
KD Cim, @,y + 2K

Jj=1
0<m, ,m,<v 1=0

<Z k[aj[) en,j + %(en,j)Z} + (en,j)m }
1=0

that are bounded from above independently of k.

+

for some constants Cim,m,

Now using (4.1), for i=1,...,q,
n,i k d ku lJ "
€ = Zaij E cjmlmzajmlajmz + aj”
(4‘11) Jj=1 0<m, ,m,<v

+

v ) ' ) ! .
(Z kl“j/) e+ %(ew)z} + (6’"’])"’} .
Y
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We rewrite (4.11) as

(4.12) CDE = —k""'D¥ - kD(®E), - %D(Ez)x ~ kDE,_,
with ,
n,l n,g\T !
E=E",...,e"), o= ko=
li m
Y= ) Cim,my®im, Xim, T iy -
0<m,,m,<v

Multiplying by DE, integrating, and using periodicity, we get
((CDE, DE)) = -k"*'(D¥, DE)) - (DU, , DE?),

from which we obtain the estimate

(4.13) IEI® < ek I¥NREN + kU D IEN .

Using (4.1) and an induction argument, it is easily proved that
4.14) o, =™ + PV, . d¥P), i=1, g, 1=0,..., v,

where ¢, is a constant, P, is a polynomial in 3/ — 1 variables, and UV =
DJu|,_,. Using (4.14), the definition of ¥, (3.3), and (3.4), we get |¥| <
c(||u°||3y+3). Using this and (3.17) in (4.13), for k£ sufficiently small we get

(4.15) VE) < ck”*'.
Now from (3.1), (3.2), (4.8), and (4.10),

A= u(f"y - ka(UU +U.__)=u(t") +bTA_l(U —eu(l"))

XXX

- - D -
(") + KB4 a1 AT E = Zk’ 2+ a7'E.

I=1

Expanding u(:""') in a Taylor series at ¢, we see that

tn+l
4.16) Wty = -1 "' =)' D" u(s)ds +bT 47 E;
v! Jp t
it follows from (4.15) and (4.16) that
(4.17) " = u(@™ ) < k"

Now multiplying (4.12) by —-DE__ — $DE 2 and integrating, we get
((CDE,, DE,)) = %((CDE, DE?*)) - k”*‘((D‘P DE,))
1, E2
+ 2K(D¥, DEY) + S(Do,,, . DEY)
k

- %((DQC, D(E,)") + 3((DD,, DE’)).



492 OHANNES KARAKASHIAN AND WILLIAM McKINNEY

From this it follows that
2 2 v+l 1 2
IE N < cUENMEN + ek I N BEN + k™ 1Pl MEN

2 2
(4.18) + kP M MEN + kD Nl N E N

2
+ KNP M MENLMNEN -

Now using (4.14), (3.3), (3.4), and the definition of ®, ¥, it follows that

0, ¥l I s NP Moo IIuOII3y+4);hence, using (4.15), it follows
from (4.18) that

xxx“

VE N < k™" + ck™ 2E] -
Using (3.3) and (4.15), it follows that

(4.19) IEl,, < IEN+IE ) < k™"
(4.9) now follows from (4.15), (4.16), and (4.19). O

In the sequel, we shall let «" = u(¢"), and u"'+1 W' i=1,...,q,beas
n (3.1), (3.2). Let U™, U", U™, U'UM', UL denote the N-vectors

whose jth components are «"*'(jk), u"(jh), u™'(jh), u™'(jh)u" ' (jh), and
Zx; (jh), respectively.

Also, let uZ , uZ“ , uZ’i, i=1,...,q,beasin (2.13) and (2.14), and let

{&i}fil be the basis introduced in §2. Then there exist unique N-vectors U,:' ,

urtt, Ul i=1,..., q, such that

N
Wy =SUN 6, ut =308,
Jj=1

J=1

b4

. N . ~
uZ"=Z(U:")j¢J., i=1,...,q.
j=1
We now have

Theorem 4.2. Suppose that the IRK method satisfies (S) and (P). Then there
exists a constant ¢ independent of k and h such that
(G[Unﬂ _ Un+l] Un+l Un+l)

o —Yn p

< (1+ck)(GIU" - UM, U" = U, + ck b
Proof. From (3.2) we get

(4.20)

q
(4.21) GU™ = GU" — kS b GUT U+ UL
=1
Define the map f: S, xS, — S, by (f(v,w), x) = h'l(vwx W s X)s
Vy € S,'l. Such a map exists by virtue of the Riesz representation theorem.
Denote f(v,v) by f(v). The map f(-) induces a unique map F:RY 5 RY
via

422)  (F(V),=(f(),d)=h"'(vo +v, ., ), i=1,...,N,

xxx?
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where v = Z q& Now from (2.13),

j=1"J
(4.23) GUt = GUp - kZ bEWU).
From (4.23) and (4.21) we get a
(4.24) GE™' =GE" -k i AR

with " =u™ -yt B =U"- Uy, B = F(U™) - F(Uy'), and

zri = Fum - Gum ’U” ‘4 U"1]. Note that (F(U" ))J (@), 8),
1,..., N, where &' is the quasi-interpolant of «"' given by @' =

Jj=
Zj:l '¢j From (4.24) we get

((’”;En+l n+1)h

= (GE", E") —2kZb G'E", ¢ 'VEm T~z ),

i=1

q o ) o
+k2 Z blb[(G I/Z[En,l —Zn”], G 1/2[En,1_Zn,1])h'
i,l=1

(4.25)

Now from (3.1) we get
S g - : ; .
(426) GU"'=GU" -k a,GU™U’ +UL)), i=1,...,4.
j=1
From (2.14) we also get
(4.27) GU;"'=GU, -k a, F
From (4.26) and (4.27) we get, with E"' =U""' - U,
(428) (";',1/2En,i _ 1/2 i —1/2 —.n N Zn _]]
Using (4.28) in (4.25), we get

((’”;En+1 , En+l) (GE E E 1/2 —1/2[:n 1_Zn l])

_kz Z mij(é—l/zlan,i_ n z] G—1/2 —n,j Zn,j])h.
i,j=1
Since the matrix {m,;} is nonnegative definite, we obtain

4.29)  (GE™',E"™"), <(GE",E") —ZkZb(E"' gi-z"h),.
i=1
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n,i

We next estimate the term (E"°°, E"’i) , - Note that

j j al ] ] =~ n,i >l n,i
(E™' EDD, =Y (U - USY (F UMY - F(UY),

=1
) N0 n,i_n,i n,i N, n,i
=(uh Upx +uhxxx—[uh Upx +uhxxx]’uh — U, )
1 yansi N0 n,i;2 N, N n,i,2
=§(uhx s [y, —u, ])S%”uhx ”oo”uh — U, ™.

Now note that
”az,i _ u;:,iHZ _ (("-,'.[Un,i _ U:,i]’ Un,i _ U:,i)h _ (("-,'.En,i’ En,i)h )
Also, using (2.6), (3.3), (3.4), and (3.25), we have

~NL i 0
Hence,
(4.31) (E™', 2", <c(GE™', E"),.

Now for j=1,..., N
("), = (FWU™") - GIU™'Ul ' + UL,

N
-1, n,i n,i N, bt -1 bt 7 n,i n,i n,i
= h (uh uhx + uhxxx s ¢j) - h (¢[ s ¢J)(u ux + uxxx)(lh)
I=1
-1 N0 n,iqz~n,i % n,in,i N
= h {([uh —-Uu ]uhx . ¢j) + (u uhx +uhxxxa ¢J)

(4.32)

~B(4,. @)u"”‘(lh)]} ,

where P(x, ut, D) represents the differential operator W' /OXx + 8* /6)(3
and B(§,, ¢,) = (P(x,u"", D)¢§,, ;). The term

N . . o .
RSy, )P, u, DY) (Lh) - B(dy, §,)u" (Th)
=1
is precisely the truncation error F, introduced by Thomée and Wendroff (cf.
[12, p. 1064]). By Lemma 4.2 of [12],

1< ch".
(4.33) lgaéleFjl <ch
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Hence,

N

(E hz nl_U}:ll (Zn I)
Jj=1
. . . N .
(4.34) = (g Ty = ™1, iy — ) =YD F(E™Y),
Jj=1
< Nty Mool = ™ Wity = sy '+ UFLIE"™ N, -

Using (4.33), (2.6), (2.5), and (2.3) in (4.34), we get
(4.35) (E™', Z""), <ch” +c(GE™', E™),.
Using (4.35) and (4.31) in (4.29), we get
(4.36) (GE"',E™"), <(GE",E") +ckZ L+ ckh” .

Since the matrix DA~'D™" is positive definite, applying a previously used
diagonalization technique to (4.28) yields via (4.31) and (4.35)
q P P ~
Y (GE™', E""), < «(GE", E"), + ckh™ .
i=1
Using this in (4.36) gives (4.20). O
The main result of this paper now follows.

Theorem 4.3. Suppose u(,), € S,', satisfies (2.12). Under the hypotheses of Theo-
rems 4.1 and 4.2, we have

(4.37) [max, lu(") — upll < c(k” +h')

for some constant ¢ independent of k and h.

Proof Let U(t ”“) denote the N-vector with components u(jhk, ¢
1,..., N. Recall that U" = U(¢") here. From (4.20), (4.9), and (2.3),

(G[U(lnH) _ U,:'H], U(tn+l) _ U:+l)h
_ (G[UWH _ U,:Hl], Un+l _ U:+l)h
+ (G[U(lnﬂ) _ Un+l], U(tn+l) _ Un+l)h
+2(6[U(1n+1) _ Un+l], Un+1 _ U}:l+l)h
< (1 +k)((~;[Un+l _ U,:'H], Un+l _ U:+l)h
+ (1 +k—1)(6'[U(tn+l) _ Un+l], U(tn+1) _ Un+1)h
< (1+¢ck)(GIU") - UM, U(") = U, + ckh™ +ck™ .
From this it follows that
(GIU(™) - Uy, U™ - Uy),
< ¢(GLU(0) - U}1, U(0) - U)), + ch® + ck™

n+l) j —
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or
(4.38) g (") =l < clliy (0) — ]| + cCh” +K"),

where i,(t) is the quasi-interpolant of u(f). (4.37) now follows from (4.38),
(2.5), and (2.12). O
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