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ON OPTIMAL HIGH-ORDER IN TIME APPROXIMATIONS 
FOR THE KORTEWEG-DE VRIES EQUATION 

OHANNES KARAKASHIAN AND WILLIAM McKINNEY 

ABSTRACT. We show that the well-known order reduction phenomenon affecting 
implicit Runge-Kutta methods does not occur when approximating periodic 
solutions of the Korteweg-de Vries equation. 

1. INTRODUCTION 

In this paper we obtain optimal rate of convergence estimates in time for high- 
order fully discrete approximations to 1-periodic solutions of the Korteweg-de 
Vries (KdV) equation 

fu + uU +eus =0, O<x< 1, t>0, 
(I. t'1 ux,0)u0x) 

These approximations are generated by a finite element process for the spatial 
discretization and implicit Runge-Kutta (IRK) methods for the time-stepping. 
As a class, IRK methods possess superior stability properties, enabling them 
to handle many stiff nonlinear problems. In addition, many IRK methods are 
such that at each step the computational work may be subdivided into sev- 
eral independent tasks, allowing for parallel implementation on multiprocessor 
computers; cf. [ 10, 1 1]. 

It is well known, however, that for some problems the observed order of con- 
vergence of an IRK method is less than the optimal order. We remark here that 
this phenomenon is not caused per se by a lack of regularity on the part of the 
solution. A first allusion to this phenomenon may be traced to Crouzeix' thesis 
[6], where lower than the optimal orders are obtained for parabolic problems 
with time-dependent coefficients; for numerical evidence we refer to [7] and the 
references therein. 

In the case of the KdV, in a previous paper [8], the order reduction was 
avoided by the introduction of appropriate correction terms during the calcula- 
tion of the intermediate values, in the case of two diagonally implicit methods 
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of (optimal) orders 3 and 4. In this paper, we show that these modifications 
are indeed unnecessary, and that the optimal orders can be recovered by exploit- 
ing the fact that the solution is in the domain of adequately high powers of the 
differential operator. This agrees well with the results of numerical experiments. 
Our new approach consists of introducing, at every time level tn. the function 
un+l by applying the IRK method directly to (1.1). We observe, however, that 
un+1 is not actually computed but serves merely as a convenient intermediary 
for the analysis. This generates two difficulties: First, we must establish that the 
system of nonlinear (ordinary) differential equations obtained does indeed have 
a solution which is sufficiently regular. Second, the fully discrete (computable) 
approximations uh+I must be compared directly to un+ 1, a difficult task in 
attempting energy type estimates, given that the difference of the two functions 
is not in the finite-dimensional subspace. 

The paper is organized as follows: ?2 is devoted to preliminary material. In 
?3, we successfully resolve the first difficulty mentioned above. We also obtain 

n1. 0 bounds for u'~ in terms of the initial data u . In ?4 we obtain optimal 
estimates for the local truncation error un+l - u(tn+l) in appropriate norms. 
Using the stability properties of the IRK methods, we then estimate un+l - 

n+1 Uh . The convergence of the fully discrete approximations is then obtained 
by a simple argument. We note that in this paper we do not address issues 
pertinent to the existence and uniqueness of the fully discrete approximations 
{ un} and to the convergence of Newton's method for solving the nonlinear 
algebraic equations, since these topics were treated in earlier works; cf. [2, 3, 
8]. 

For the sake of simplicity, we drop the constant e, given that all the results 
remain valid, with the proviso that the constants appearing in the estimates may 
tend to infinity as e approaches zero. 

2. PRELIMINARIES 

2.1. Some function spaces. For integer m > 0 and real p, 1 < p < oo, we let 
WmP = WmP(O, 1) denote the usual real Sobolev spaces with norm 11- Im p . 

For p = 2, the Hilbert spaces Hm = Wm 2 have inner product (, .)m and 
norm 11m. For m = 0 we shall let L2 = H and use (. -), I I We shall 
also replace W0 ?? and I IlI 00 by Lw and 11 IIIr, respectively. 

We shall also use the spaces Cm = Cm [0, 1] of functions f such that 
f, ..., f(m) are continuous on [0, 1], equipped with the norm I * I m . . 

We shall say that f is periodic in Cm if f E Cm and f(j) (0) = f() (1) , j - 

0, ... , m. Furthermore, in view of the (compact) imbedding Hm Cm-', 
m > 1 (cf., e.g., [1]), we shall say that f is periodic in Hm, m > 1, if f E Htm 
and fP)(O) = f(j)(1), j = 0, ... , m - I . 

For q > 1 integer, we use ytm to denote the q-product Hm x ... x Hm 
equipped with the inner product ((u, V))m = EqZI (ui, vi)m, and norm GIIuIm = 

(ZE 1(U , Ui)m)1/2 . In particular, we shall denote ((., *))o by ((a ,)) and III * 111o 
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by III I j. We shall also use the spaces Wm = Cm x ... x Ctm equipped with the 
norm IIIu IImOO = maxl<i<q IlUi lmw; we shall denote III I 00 by II I.. 

It was proved by Bona and Smith [4] that a unique global, periodic solution 
u to (1.1) exists in Hm, m > 2, provided the intial data u 0is periodic in 
Hm. Furthermore, O'u/Oti E C(O, t*; Hmj3i) for 0 < t* < oo and all j > 0 
such that m- 31 > O ,and 

sup <?c(u 01m) O<t<t* ||at | 3j |U ||m 

We assume that u0 is periodic in Hm for m sufficiently large to guarantee 
the convergence results below. 

2.2. The finite-dimensional spaces. Let 4 < r < N be integers and let h = 1 /N. 
Let Sh denote the space of 1-periodic smooth splines of degree at most r - 1 
defined on a uniform partition xi = ih, i=0 ...., N. 

It is well known that if v is 1-periodic and sufficiently smooth, then there 
exists a x e Sz such that 

m-1 
(2.1) E hJ'Iv - Xllj?p < chmlIvlIm 5 , 1 < m < r, p = 2 or p = oo, 

j=O 

for some constant c independent of h, v, and X. 
In addition, elements of Sh possess the following inverse property: there 

exists a constant c, independent of h, such that for all X E Sh 

2 2) II,1 < ch ( _)11%zII> 11%z1(>00 < ch ('f+ 1/2) 11Z11, (2.2) ~~3? ~HH ~HH 
O < ae < ,B< r-1. 

One may choose as basis the well-known "Bell" splines 011 ... ON asso- 
ciated with the nodes x1, ... , XN, respectively. For the analysis, we find it 
more convenient to use a set of modified basis functions q1, ... ., q$ used by 
Thomee and Wendroff [ 12]. 

Let G denoted the Gramian matrix Gij = h (qj$, ki). G is symmetric, 

positive definite; so G11/2 and G 1/2 may be defined in the usual way. Let 

5 *)h denote the following inner product on RN: 

N 

(V, W)h= h VE I P1 , 
i=l1 

and V VIIh the associated norm. We have (cf. [ 1 2]) 

(2.3) 
2 

(GV, V)h < g2IVIH VV E R , 

where g1, g2 are positive constants independent of h. We also have 

N 

(2.4) ||Vh =GV, V)h , where vh Z Vki 
i=l1 
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Let v be periodic and sufficiently smooth; then the quasi-interpolant Vh 

ZN1 v(ih)q$ of v approximates v in the following way: 

(2.5) 1V- V)h11 < ch rjV(r)11. 

Let v E Hr n W2'2 be periodic. Using (2.1), (2.2), and (2.5), it can be 
shown that 

(2.6) HlVhxHoo < C(1VH112,w + 11V11r); 

cf., e.g., [2, p. 424]. 

2.3. The implicit Runge-Kutta methods. For q > 1 integer, a q-stage IRK 
method is given as a set of constants arranged in tableau form: 

a11 * q IT1 

a ............. a T a1 a T 

b l ............. b I ~~q 

Given the Initial Value Problem 

y' =fPt y), O< t <t*, 
(2.7) { 

= y << 

IRK methods can be applied to generate approximations y, ..., y as follows: 
let k = t*/J be the temporal stepsize and let tn = nk. Then 

q 
(2.8) y =y + k bif(t ' y') 

i= 1 

where t"'n = tn + k-c1, and where the intermediate values yn are given by the 
coupled system of equations 

q 
(2.9) yn,I i= yn+ k E ai f (tn'Y 

I 
J i= 1,n.. q. 

j=1 

We shall assume that these methods satisfy certain stability and consistency 
conditions. Indeed, it will be required that 

(S) - bi > ? i= 1, ... q 

j the q x q array mij = aijbi + ajib1 - bibj is nonnegative definite. 

The above condition, known as algebraic stability, is stronger than that of A- 
stability. 
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The consistency conditions are given by 

q / 1 
(B) Zb1T1- = 1+ 1 

j=1 

qI T1+1 
(C) Eaijj i = 1, .. , q1 0, ... . p - 1= 

j=1 

q b+ 
(D) ,ailb = Ibjl( , ), j = 1 ... ., q, 0, . .., r- 1 

i=1 

for some integers v, p, r > 1 . We assume that 

(2.1Oa) v<r+p+1, 
(2.1Ob) v<2p+2. 

The consistency relations may be expressed, with the help of the q-vector 
e = (1, ... , 1) , as 

bTT Ie= - 
I I=0 

I T+ 1e T1+1e AT e = 1+ 5 I = 0, .... , p - 1,5 

T 

bTT b (I+- T1+1) I 1 

respectively, where A = (aij), T = diag{Tr, ..., Tq}, and b = (b1, ... , bq)T. 
The existence of the numerical approximations is obtained by assuming the 

following positivity property: 

p A is invertible and there exists a positive diagonal matrix D 
P 

such that xTCx > O Vx E Rq, x 0O where C = DA 1Dir. 

In particular, let the constants a, a a2 f l1 ' fl2' Y1 Y2 be given by 

O<a1 <X Cx, X Cy < a2 

< fl1 < X C X, X ClY <l2 

0 < yj < x Dx < Y, Vx, y ERq with xT =y yT= 
T 

T5 

We next give the two- and three-stage methods of some families of IRK 
methods. 

(i) Gauss-Legendre methods. These methods form a particularly interesting 
class in that the matrix M in (S) vanishes identically, a fact that has important 
implications such as the existence of discrete conservation laws and mild growth 
of the discretization error. For this class, v = 2q, p = r = q. 
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2-stage method 3-stage method 
5 80-24 50- 12V 1 X 

11 1 36 360 360 2 10 
4 4 2y? 2 2y? 50+15v 2 50-15vB 1 

1 1 1 1 + 1 360 9 360 2 
4 2w 4 2 2w 50+12 80+24V 5 1 + X 

1 1 360 360 36 2 10 
2 2 5 8 5 

1 8 I9 1 8 

(ii) Radau IIA methods. These methods are characterized by Tq = 1. Also, 
v=2q- 1, p=q, r=q- 1. 

2-stage method 3-stage method 
88-7v 296-169V6- -2+3/ 4-d/6 

_ 1 1 360 1800 225 10 
1-2 -12 3 296+169v'S 88+7v' - 2 - 4+3 
3 1 1 1800 360 225 10 

4 16-dV 16+V 1 1 
3 1 36 36 9 
4 l 16-d 16+jf 1 

36 36 9 

Both of the families above are infinite, in the sense that arbitrarily high-order 
methods can be constructed. 

(iii) Diagonally implicit methods. 

2-stage method 3-stage method 

1+ I 0 2 + 0Y 0 y 
_ 

2 V3_ 2 
2__ _ _ __ y 0 

a 2 2X 2 2V 2y I - 4y Y I - y 
1 1 

2 2 i~~~~~~~~~~41 _)2 
1 

12(1 _Y )' 24(,1 ')' 2 
1~~~~~~~~~ 

1 

where y= + cos f is a root of the equation 24x3 _ 36X2 + 12x - 1 = 0. 
For the two-stage method, v = 3, p = r = 1. For the three-stage method, 
v = 4, p = r = 1; hence (2.1 Oa) is not satisfied. This will necessitate a 
slight modification in the estimation of the local truncation error. In [8] these 
two methods were applied to the KdV equation with appropriate modifications 
of the intermediate equations (2.9). Optimal-order rates of convergence were 
then established. The new machinery adopted in this paper reveals that these 
modifications are unnecessary. 

Concerning the application of IRK methods to the. Initial Value Problem 
(2.7), a comment concerning the local truncation error 

8n+1 = k -1 (n+l _ (tn+l)) 
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is in order. y n+1 is defined by taking yn = y(tn) in (2.8) and (2.9). Sup- 
pose that the IRK method satisfies (B), (C), and (D) together with (2. 1Oa) and 
(2. 1Ob). Suppose also that f is sufficiently smooth and that 

(2.11) bIft I) - (t, Y2)I < Lly, - Y21 Vt E [0,I t1 ], Vyn, Y+ 

Then (cf. [5, 6]) there exists ko > 0 such that Ien+1 < ck' for k < ko 
where c is a constant independent of k, but which may depend, in general 
exponentially, on L. 

When (2.11) does not hold, or when L is large, such bounds on the local 
truncation error do not hold or become useless. Indeed, in certain instances a 
reduction in the order is observed (cf. [7] and the references therein). 

2.4. The fully discrete approximations. Motivated by (2.8) and (2.9), we define 
the fully discrete approximations {unj = to the solution u of (1.1) as fol- 
lows: let 7h u be any conveniently chosen element of Sr, e.g., L -projection, 
interpolant, etc. that satisfies 

(2.12) U0- 7rhU ? 11 < ch. 

Typically, the constant c depends linearly on Iu0 Ir. Let uth = zhu0. For 

q 

(2. 13) (h a )=(h ) %- k Ebi(Uh U hx + hxx,%)VE Sh 
i= 1 

where 

q 

(2.14) (Uh s /) = (Uh X X)-kE, aij(Uh Uhx + UhxxxX) 
1=1 

V% E Sh , i = 15 .. *5 q 

In [8], optimal, i.e., O(k"), rates of convergence were obtained by adding ap- 
propriate correction terms to the equations (2.14) in the case of two diagonally 
implicit methods with v = 3 and v = 4. In so doing, however, the schemes ac- 
quire a multistep nature, which places them outside the family of (single-step) 
RK methods. In a later paper [3], convergence rates of p + 2 = q + 2 were 
obtained for the class of Gauss-Legendre methods [5]. The analysis, however, 
applies to other methods as well. 

Using a different approach, we shall prove below that the full rate v can 
indeed be obtained. In particular, for the Gauss-Legendre methods we have v = 
2q, the maximum for a given number q of intermediate values. In addition, 
for these methods mij = 0, which implies that IIunjj = 1IhUH11, n = 0, ... , J. 
a discrete analogue of the second conservation law of the KdV equation. 



480 OHANNES KARAKASHIAN AND WILLIAM McKINNEY 

3. A SYSTEM OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 

In this section we show that the IRK methods applied to the solution of (1. 1) 
at a given time t' yield a unique set of intermediate values {Un, ijq } given by 

q 
(3.1) U 'lU t)k aij~u JU J XX~X) i 5 ... ,q, 

j=1 

from which u'~" is given by 

q 
(3.2) U+ =U(t )-_k ,b (a ' oni+ ni) 

i=1 

We also show that {Un' }iq and un+I possess the same degree of smooth- 
ness and periodicity as u(tn). Using this, in ?4 we shall obtain the estimates 

un+ -u(tn+ )llop < ck , p = 2, oo, where t = t +k. 
Throughout this paper, we shall adopt the following notation: let V = 

(vI, ... , v1)T and W = (w1, ..., wl)T be two l-tuples; by VW we shall 
mean the l-tuple (vw, .I . . , v1w1)T . For an 1 x 1 matrix M, MV shall de- 
note the l-tuple with E M11v1 as ith component. Also, Vx shall denote 

(V .. *,V~x X 

With this notation, we may express the equations (3.1) as 

(3.1') U=eu(tn)-kAUUx-kAU~xxx 

where U = (u ' 1 unf qJ)T and eu(tn) = (u(tn), ..., u(tf))T 

Some inequalities that will be used frequently are contained in the following 

Lemma 3.1. (a) Let v E H1. Then 

(3.3) 11vII 
2 < ? v I2 + 2H1vII IlvXI. 

(b) Let v E H2 be periodic. Then 

(3.4) IIvXjK00 ? llVxxll 

(c) Let v E H3 be periodic. Then 

(3.5) IIvx 11 < IIvXX 11 < 
IX 1 

(3.6) HvIXI 20 < ? vxI HvXxI < ? Hv H 

(d) Let V, W eY3 be periodic. Then 

(3.7) 111 ~~~~,,V Wx 1112 < 11, V1112 11, WI,, 11, Wxx 1 (3.7) GVxxx?GG~G'G~DJ 11 
Proof. (3.3) is standard; (3.4) and (3.5) are proved easily using integration by 
parts and periodicity. 
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To prove (3.6), note that since v is periodic, v,(a) = 0 for some a E [0, 1]. 
We may assume without loss of generality that a = 0. Then, for x E [0, 1], 

vX(x) = 2j v'(t)v"(t)dt = -2j v'(t)v"(t)dt. 

It follows that 

V2(x) < 1 lv'(t)l lv"(t)l dt < I~vj . 

To obtain the second inequality of (3.6), we integrate by parts to get 

HH2 
_ 

j v(t)v"(t)dt < HIvI 

Similarly, 

Ix1= - | v'(t)v"'(t) dt < I~vH 

The desired inequality now follows by multiplying the last two inequalities, 
simplifying, and using the result in the first part of (3.6). To prove (3.7), we 
use (3.6) and the discrete Schwarz inequality: 

q q q 2 

OIVWAll2 = S IVi~iXII2 < EIViII2IIWiXI2 < ?,Vill 1? 
i=l i=l1 ~ 

< 1 V 11,2 I I I W ixxxI I 21 V11n211,W Illj xx n ? 
i=1 

Lemma 3.2. Let W E Wm, m > 0, be periodic and assume A satisfies (P). 
Then, for k $& 0, the (linear) system 

(3.8) V + kAV~xx = W 

has a unique periodic solution in Fm+3. 

Proof. To show the existence of a unique solution to (3.8) in Fm+3 with 
V() (0) = V(j) (1), j= 0, ... , m +2, we need only show that the homogeneous 
system V + kA Vxx = 0 has no nontrivial (- 0) solution (cf. [9, Theorem 1. 1, 
p. 408]). Indeed we get 

(3.9) C(DV) + kDVxxx = 0, 

where C = DA D1 is positive definite. Multiplying by DV and integrating, 
we get ((C(DV), DV)) = 0, which forces DV- 0. Furthermore, writing 

VXXX = k IA I(W - V), we see that V(m+3)(0) = V(m+3)(1). o 

Remark 3.1. In view of the continuous imbedding ofm+r 1 , m , ffl, 
m > 0, the solution V of (3.8) is periodic in o9m+3 if W is periodic in 
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,X'+1. Furthermore, from V k- = IA I(W- V), we see that V is also xxx 

periodic in ym+4 

Lemma 3.3. Let f E Rm+1, U e Ymi, m > 3, be periodic and suppose that A 
satisfies (P). Let the constants MA1, M2, M3, and ko be given by 

2a2 M1 = a Df III, 

=fl (l2 + 1) + cf IIIIDfxxx 1, 

M3 = IIIDfxxIII + 2 (f2 + a) M1 M2, 

k- a2y1 

Suppose that 0 < k < k0, IDIDUI ? < Ml, and IIIDUxxxII < M2 . Then there exists 
a unique periodic solution V in Ym+1 to 

(3.10) V + kAV~xx = f-kAUUx 

satisfying 
( 

BDVIII < 1m 

(3.11) IIGDVXXXIII < M2, 

IIIDVXxxXII < M3. 

Proof. Since U E Ym, it follows that U E m-'1; hence fX E Fm-2 c 
yin . Thus, by Lemma 3.2 and Remark 3.1, there exists a unique periodic 
V E ym+l satisfying (3.10). To prove the first estimate in (3.11), we rewrite 
(3.10) as 

C(DV) + kDVxxx = CDf-kDUUx, 
from which it follows that 

((C(DV), DV)) + k((DVxxx, DV)) =((CDf, DV))-k((DUUx, DV)) 

and thus, by periodicity and (P), 

ce, I'llJD 
V 

c1 2 jID f III " --DVII Ali LIDUUx II LJ DVII"I 

and hence 

IIID V 1II < 2 IIIDf III +-IIIDUUxUII. 
a1 a1 

Now using (3.7), 

D Vli < '+-II ulk 3/2 Il ~x1l/2 IID I< MI+ 
k 

IDDUDI312IIDUxxxDIII 
DVI-2 aly1 

M kM312M1/2 
<- I Mi 2 <Al 

-2 + a~y 
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Also V - f = -kAV,,, - kAUU . Hence 

((CD(V -f ), D(V -f))) = k((DVxxx, D(f - V))) 
+ k((DUUx 5 D( - V))) . 

So 

ce IIID(V - f)111 < k||DUUxII I|D(f - V)II2 + k((DVxxx, Df)). 

Moreover, 

((DVxxx, Df)) =-((DV, Df~xx)) = ((D(f - V), Df~xx)). 

Hence, 

(3.12) a, IIID(V - f)III < k(I|IDUUXIII + IIIDf~xxx111) 

From (3.10), 

kC DjVxxx = D(f-V)-kc D UUx. 

Hence, from (3.12) and (3.7), 

IlD DVxxx II < JD(f- V)|II + I2iDUUxI 

(3.13) ? -GIfx + (fl2 + a DUUx 

< IIIDfxxxIII + (f2 ++) M y2 

Hence, 

IIID'VxxXj < ~--fIIIDfxxxIIj+ ~ (fM+)2j + 'M2 = ItID 1ll' la{llfxxxtI +2 (2 + a ) 72f2 +2 M2 

To estimate IID Vxxxx II, differentiating (3.10) and proceeding as above, we 

obtain 

III DVxxxx III < aaIIIDfxxx III + 
Kfl2 +-) III(DUUx)xIII. 

Now 

q q 

III(DUUx)xIII2 = Z IIdj(ujujx)xII2< E(l?djuixi + I1diuixuixlI)2 
i=l i=l 

q 

? Z(lidjuill IIujxII00 + 11diuixlllluixil) 
i= 1 

Then, using (3.4), (3.5), and (3.6), we get 

23 2 < U| < < MI (3.14 III(UU~)~II ? jjjD~jj jj ~ II 
-Y-,1 
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Hence, 

ID Vxxxx III < IIIDfxxxxIII + A 2 + I) MIM2 = M3 

This concludes the proof. 5 

We are now in a position to prove the following 

Theorem 3.1. Let f E Rm+1, m > 3, be periodic. Suppose A satisfies (P), 
and let the constants MI, I2, !M3, ko be as in Lemma 3.3. There exists a 
constant 0 < k0 < ko such that if k < k1, then there exists a periodic solution 
U in Xm+I to 

(3.15) U+kAUUx +kAUxxx = f 

satisfying 

(3.16) IIIUlllm+i < c = clflllm+i), m >3. 

Furthermore, there exists a constant 0 < k2 < ko such that if k < k2, then the 
solution U of (3.15) is unique. 
Proof. Consider the sequence { U1}J>0 generated by 

{ UJ+l+kAUj+l XXX = f-kAUJUjx, j=0, 1, ..., 

U0= 0. 

Note that trivially U0 is periodic in 9m+ . IIIDUOI I < M1, and IIIDUoxxxIII < 
M2; by Lemma 3.3 and Remark 3.1, U1 exists uniquely and is periodic in 
Rv"m+l. Furthermore, IIIDUJII < M1 and IIIDU xxIII < M2. This argument may 
be used repeatedly to yield a well-defined sequence {Uj}j~o. For j > 0. Uj is 

periodic in Rm+I and satisfies IIIDUjxxxxIII < M3. 
Now if Uj* = Uj*+1 for some j* > 0 then Uj. is a solution of (3.15), 

since j. E RA C K3. Otherwise, the sequence { Uj}j>o is infinite and is 

bounded in k4. Since RA is compactly imbedded in F3, we can extract a 
subsequence { Uj, } which converges in K3 to some U. The latter must indeed 
satisfy (3.15). To see this, it is sufficient to show that { Uj} I0 is Cauchy in 

1" . Indeed, from previously used techniques, it follows that 

lllUj+I - Uj1l < ck 11U - Uj_11 1, j = 1, 2, .. 

for some c = c(IIIAfII3). Thus, the map Uj -+ Uj+1 is a contraction in X 1 for 
k sufficiently small. 

To show uniqueness, assume the existence of two solutions U, and U2 of 
(3.15) and let E = U1 - U2. Then 

E + kAE~xx =-kAE U2x -kAEx U1, 

from which we obtain 

((CDE, DE)) = -k{((DEU2x, DE))- 2((DEU1x, DE))} 
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Hence 
2 

IIIDE < (III < L2x Illo + III uL1 lll)DElll . 

Uniqueness will follow, for k sufficiently small, from the estimate 

(3.17) iII~xll0 I < c = c(lllf 1113) 

for periodic solutions U of (3.15). Indeed, rewriting (3.15) as 

CDU + kDUUx + kDU~xx = CDf, 

multiplying by DU and integrating, we first obtain the estimate 

(3.18) IIIUIll < cIf III . 

Now letting V = U in (3.13) and using (3.7), we obtain 

ll Uxxxll ? clIlfxxxll + clllUUxlll< Cllfxxx?I III + clllul32 IlUXXll I 1/2; 

from this, and using (3.18), it follows that IIIUxxxll < c(1IfI113); (3.17) now fol- 
lows from (3.18) and (3.6). 

We now establish (3.16). From (3.11) it follows that IIIUIII1 < c(IIIfII11) / = 

0, 3, 4. So, as an induction hypothesis assume that 

(3.19) IIIUIII1 < c(IIfIlld), / = 3, ... , s < m. 

We next prove that as a consequence of (3.19), 

(3.20) h11f- UII1j < kc(IIf111j+3), j = O, ... , s-2. 

Differentiating (3.15) j times, we get 

(3.21) CD(U - f)(I) = -kD(UUX )(j) - kD U(j+3). 

Multiplying by D(U - f )(j) and integrating, we get 

((CD(U - f )(j) , D(U - f U))) = - k((D(UU)(j) , D(U - f )(j))) 

- k ( (D( U - f )(j)5 Df (j+3))). 

Hence, 

(3.22) III (U - f )(j) III < ckIIID( UU )Uj) III + cklllDf (j+3) 111. 

Using Leibniz' formula, from (3.3) and (3.19) it follows that 

(3.23) III D ( U UX ) (j) III < c L III U tk) III 00 III U(j 
k 

1)III (3.23) ~~~~~k=O 
< 

c(IIlfIlIj+1) , j = O... s - 2; 

(3.20) now follows from (3.22) and (3.23). 
Again differentiating (3.15) s - 2 times, we get 

C lDU(s+l) -1D(f - U)(s2) - C lD(UUX)( 



486 OHANNES KARAKASHIAN AND WILLIAM McKINNEY 

Multiplying by DU(s+l) and integrating, we get 

(3.24) iiU(s+l)lll < C III(f - U)(s-2)11 + ClIl(UUx)( ||| . 

Using (3.20), (3.23) in (3.24), we get 

III U(s` 4ll ? c(llfillJs+,) 
This concludes the induction argument and the proof of the theorem. o 

In the sequel, we shall take f = eu(tn). It follows from (3.2) that Un+l = 

(1 - bTA le)u(tn) + b A U. In view of the estimates (3.16) and the a priori 
estimates on the solution u of (1. 1), we have 

(3.25) |,un+lm 1, l|Ulllm < C(||Ut OIm)) m > 4. 

4. CONSISTENCY, STABILITY, AND CONVERGENCE 

In estimating the local truncation error IIu(tn+l) - Un+l1 , we introduce the 
set of functions {caij(x)}, i = 1, ... , q, j = 0, ... , v, defined recursively by 

a .iO= u(t , i= 1, ..., q, 

(4.1) a qji = ajj {I aocyjc ajrn + Cay/ 

t ~~~~i = 1 , . .. , q5 , = 0 , . .. , v - 1 

Here (') denotes differentiation with respect to x. 
Note that if u(tn) E Cm is periodic with m > 3v, then aij is periodic in 

Cm-3i for i=1,...,q, j=0,...,v. 

Lemma 4.1. Assume that (C) holds together with (2.1 Ob). Denoting the vector 
T 

(Cj ...a Ctqj) by aj, with Dju = (O'/Ot')u(x, t)lt=t1 we have 

(4.2) a -i j DJi U = O. .......... , p, if p < v, 

-AT~eD+ (4. P+j p! Dp+' if p < v - 1 

AT e 1+1 
a+= 1!Dt u 

- 1 A [(l m _ m - m!(lam)!Dt u] DtD u m=p+ Il 
( 

(4.4) - _ -TP / 
T [m! I m!(l - i) ] D m 

-A a Te/ 1 U l=p+1, ... ,v-1, z ifp<v-2. c~ 1! Du 
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Proof. Obviously, (4.2) holds with j = 0. Suppose it also holds for j = 

0, ..., / < p - 1 . Then, using Leibniz' formula, 

q M I -m I 

ai,+ + =-aiji iDtm( } )Dt mu + J!Dtu 

-- a Z a f1tD{J(uu') +DJu"} = Dtu1u aZ T 
j=1 j=1 

1+1 

- ' DI)! , i = 1,.. ., q, 
(+1) 1 

using (1.1) and (C). We also obtain (4.3) in a similar manner. 
Now using (4.2) and Leibniz' formula, in view of v < 2p + 2, 

q I l-m 
cii +I= - aij Z m )!Dl nU' 

j=1 m=p+l 

+ i D U ' + a 
Zrn k-rn). I- j 

M=- 
q I M m -m I 

=-Eaij4\ E 
j 
}!Dmtu(! j -DI mu + 

jr!Du 

+ rn+ [c D-n!DtU ] ir nD u 

+ - '!D ] } 

Now (4.4) follows from (1.1). 5 

As we shall see below, the cI 's are the coefficients of the expansions of the 
intermediate stages uns ' in powers of k, up to order v . In view of (C), the 
c 's are, up to order p + 1, time-derivatives of u at t = tn. This ceases to be 
the case from p + 2 to v . However, using (B) and (D), it will be shown below 
that appropriate linear combinations of the It's are again time-derivatives of 
u. We make this precise in the following 

Lemma 4.2. Assurne that (B), (C), (D), (2.10a), and (2.l0b) hold. Then for each 

I = O , . . . , v - 1 , ~ ~ ~ ~ j1 

(4.5 ) fl f a!(s++1) .. ., 1 with s+l<M-1 
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Proof. Assume O < I < p, O < s < v - 1 with s + l < v - 1. From (4.2) and 

(B), 

bT bT sT Ie I TT eT l I DIu 
b TT a=b T - D u= b -D u- 

Nowlet l =p+ 1 and O<s< v- 1 with s+p+ 1 < v- 1. Itfollowsfrom 
the inequalities v < r + p + 1 and s + p + 1 < v - 1 that s < r - 1; hence, 
using (B) and (D), we obtain from (4.3) 

T s bTATPeDp+iu 1 1 T s+1 b T a p-i p ~ = -y~ib (I- T )TeDf,+1u 

-( 1,) {IbTTpe-bTTs+l+Pe}DP+lu 

(S+ 1)p! {P+1 s+p+2}t 
_ DtP~ ~~~~Dlu 

(p+ 1)!(s+p+2) 

We now complete the proof using an induction argument: assume (4.5) holds 

uptosome /,with p+1 <1<v-2. From (4.4) wehavefor s=O, ..., v-1 

with s + / + 1 < v - 1, 

Ts bTTsATIe 1+1 

- Z bTTsA [( T )!Tme-m!(l m)!Dt u] D u-m 

(4.6) mp Tl T T e 1-M 
1 

E bTT SA [La -m !(l )! D t u 
m=OM!! 

-b TsA [a' - eDtu/ ] . 

As before, s < r - 1. Hence, using (D) and (B), 

T 
T s /I + 

bT AT e= (I - Ts+')T'e 

1 T / T I++ 

= +{b T e-b T e}= (l + 1)(s + + 2)' 

thus 

T sA /e 1+ /+1U 
(4.7) bT ~D +1 U 

1! t (l + 1)!(s + I + 2) 

The result will now follow from the fact that the second, third, and fourth 

terms on the right side of (4.6) vanish. We consider only the second term. From 
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(D) and (B), for p + 1 < m < 1, 
T 

bTT ATI-Mr b -Ts+1 i)Tl-mrn 

1 fb T T I-m a _b T s+im+ 

1 f Dtmu Dmu l 

s+1 lm!(l+1) m!(s+l+2)f 
Dmu 

m!(l + 1)(s+1+2)m 

As before, 

b TT AT Ie=(+)+12 Ts 1 ~1 + 1)( 

So indeed the second term is zero. n 

We have 

Corollary 4.1. Under the conditions of Lemmas 4.1 and 4.2, 

(4.8) bTA-'lt= Da u = 1,...,v. 

Proof. For / = 1, ..., p, using (C) and (B) and (4.2), we get 

T IT - iTIe I T iAT 11e I DIu 
b A- a =b A Du=b A- D u= t 1! 1 (~~ -1- )! 1 

For / = p + 1, from (4.3) and (B), 

T 1 bT TeDP+ D+lu 
b Ac- 

a 
= p! (p+1) 

For I = p + 1, ... , v - 1, we get from (4.4) 

T I b b Tle +l1 

m=p+l [ m)! m m!(- m)!D J U 

TmT T Ie DI-rn/l 
ZbjT c [ r! a-m n!(l )!t uJDu 

T [,,,Tie I -b aci- / DtU 

Using (B), the first term on the right side gives D 1+1 u/(l + 1)! . On the other 
hand, the second, third, and fourth terms vanish in view of (4.5) and (B). 5 

We now consider briefly the special case of the 3-stage diagonally implicit 
method, for which, as we recall, 2p + 2 = 4 but r + p + 1 = 3. We need only 
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verify that b TA -Ia = D4u/24. That this identity indeed holds can be seen by 
using Lemma 4.1 in conjunction with the following three identities: 

b TATe= 1/8, b TAT2e= 1/12, bT A 2Te= 1/24. 

In the next result we estimate the local truncation error. 

Theorem 4.1. Suppose that (3.25) holds with m > 3v + 4. Suppose also that (B), 
(C), (D), (P), and (4.8) hold. Then there exists k* > 0 such that if k < k*, 

(4.9) I1u(tn+l)_un+l 1 < ckv+l p=2andp=oo, 

where Un+l is given by (3.2) and c is a constant independent of k. 

Proof. Let U = (unl, n..., Un q)T and f aij} i = 1, ..., q, j =O ..., v, 

be given by (3.1) and (4.1), respectively. Let en" be given by 
V 

(4.10) un' i= Zk'ail +e'n, i = 1, ... , q. 

1=0 

Using (4.10) in (3.1), we get for i = 1, ... , q 

1:k'ail + e 
n 

1=0 

= u(t )- k aij {( k'aj + e n") ( k'aj, + e n')' 

j= 1 1=0 1=0 

+ ( k'aj, + e n) } 

1=0 m=0 ~ ~ ~~1= 
q { I-1 1 

= u(tn) k Eaij Ek Eaxmx a~ 

+kV Z cj I-m~cji~2Z' 
j= 1 1=0 m=O 

+ kvy 
a ajlm(im l + 1: kla/// 

O<ml, m2<v 1=0 

+ [( k'ca,) en'i + -2(enJ)2] + (en")"' } 

for some constants Cjm m that are bounded from above independently of k. 
Now using (4.1), for i= 1, ... ,q, 

e =ij k E Cjm m2 
c 

jml JM2 +a. 

(4.11) J=1 k0mIm2<V 

+ [(k'auj) en' + (en J)2] + (efnl)"'} 
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We rewrite (4.11) as 

(4.12) CDE = -k +1D - kD(E)x -D(E2) - kDExxx 

with 
V 

E = (enn enq)T D= 
Z 

k'c,= U-E, 
1=0 

Ti = E Cim malimC im2 +ci. 1m 2 m1 ti2 

0<m i M2<- 

Multiplying by DE, integrating, and using periodicity, we get 

((CDE, DE)) = -k + 
((DP, DE)) - k ((DUx, DE ))2 

from which we obtain the estimate 

(4.13) 111EII12 < ckv+l ITIir 111EIII + ckIIIU 1III0 2IIIEIII2 

Using (4.1) and an induction argument, it is easily proved that 

(4.14) aqil = cilu,(31) +Pi,(u(=) ..., U(312 )), i= 1, ... , q, I = O. ... v, 

where c11 is a constant, P11 is a polynomial in 31 - 1 variables, and U(i) - 

DJult=t . Using (4.14), the definition of 1, (3.3), and (3.4), we get IIIVIII < 

c(11u 013v+3) . Using this and (3.17) in (4.13), for k sufficiently small we get 

(4.15) 1IIEIII < ckv+l. 

Now from (3.1), (3.2), (4.8), and (4.10), 

U = U(t )kb (UU+Uxxx) = U(tn) + b Al(U-eu(tn)) 

= u(t n) + kbTA T 
A', + bTA-lE = E k + b T-AE. 

1!0 1=1 1=0 

Expanding u(tn+l) in a Taylor series at tn, we see that 
n+l 

(4.16) U n+l ((?) = lj (tn+ I-s)vDv+ u(s) ds + b A E; 

it follows from (4.15) and (4.16) that 

(4.17) Ijun+1 - u(tn+ 
l ?< ckv+l 

Now multiplying (4.12) by -DE~x - 2DE2 and integrating, we get 

((CDEX, DEx)) = ((CDE, DE 2))-k'((DPx, DEx)) 

+ 1kv+ ((DT, DE2)) + 2 ((D(Dxxx I DE2 

k2 2 k 
-k --((DFDx, D(Ex )2)) + 

k 
=((DFDx, DE3)) 
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From this it follows that 

ILEx III2 ? c I2EIIOOIE 11 + ckv+ Il l III lEx I+ ckv+l II'TIII.lEl II2 

(4.18) + ck III Oxxx IllII III E III + ck III OxIII IIIExIII2 

+ ck IllOx lloo ll Elll jlO IIIEl2. 
Now using (4.14), (3.3), (3.4), and the definition of F, T, it follows that 

Illlxlll III'PIIIOO IDxxx 100 IIVFxIIIOO < c(Ilu0 113v+4); hence, using (4.15), it follows 
from (4.18) that 

hE 12 ? k2v+2 + k2v+2 IIIK IIIEx III2 < ck21+ + ck21+ IIIE110 

Using (3.3) and (4.15), it follows that 

(4.19) IIIEIIIOO < IIIEIII + IIIEXIII < ckkv+ 

(4.9) now follows from (4.15), (4.16), and (4.19). o 

In the sequel, we shall let un = u(tn), and Un+l, Un, i = 1, ... q,beas 
(3.1), (3.2). Let Un+ Un n"i U n"U,", Un" denote the N-vectors in (3.1), (32). Let U U x Uxxx 

whose jth components are un+l (jh) Un jh) Un "(jh) U"(jh) Un (jh),and 
uxx (jh), respectively. 

tn n+1 n, i Also, let u h, Uh 5, u~ , i = 1,..., q, be as in (2.13) and (2.14), and let 

{qis}1i= be the basis introduced in ?2. Then there exist unique N-vectors Uh, 

+h ' h ,i = j ... , q, such that 
N N 

Uh = E(Uh )j~i h E(Uh U 
j=1 j=1 

N 

Uh E(Uh )A5) y i 5,.. q. 
j=1 

We now have 

Theorem 4.2. Suppose that the IRK method satisfies (S) and (P). Then there 
exists a constant c independent of k and h such that 

(1~1 n+1 n+1 n+1 n+1 

(4.20) (G[U -Uh IU -Uh )h 
< (1 + ck)(G[U -U, ] U -UIP)h + ck h 

Proof. From (3.2) we get 

(4.21) GUn+l = GUn -kUbIG(U U" I 
+ Unxj). 

1=1 

Define the map f: ShxShr Sh by (f(vw),x) =h (vw + w x) 
VX E Shr. Such a map exists by virtue of the Riesz representation theorem. 

Denote f(v, v) by f(v). The map f(.) induces a unique map F: RN - RN 
via 
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where v = Z J'?q$1j . Now from (2.13), 

q 

(4.23) G U7 =GUh -k biF(U"). 
i=l1 

From (4.23) and (4.21) we get 
q 

(4.24) GE"~~~+1 =Gn _ ,n, i 
_ n, i. 

i=l1 

n+l Un+l Un+l En = 

Z~"=(U ")-G[Un"U" + UXn] . Note that (Un (n 
j = 1, ... , N, where ih" is the quasi-interpolant of u' given by ih'l = 

N Un i 
Z.=1 UIqj$1. From (4.24) we get 

(GE n+1 E )h 

(4.25) = (GE , E )h -2k bi(G112E, G 162[E" -z"I1)h 

i ,1=1 

Nowfrom(3.1)weget 
q 

(4.26) GUflI=GUfl-k~aiiG(iU2n, J+Ujij), i= 1, . ,q. 
j=1 

From(2.14) we also get 
q 

(4.27) 1~u= GUn, -k n nij U+ i j 
q 

j=1 

From (4.26) and (4.27) we get, with En" = i q 

(4.28) G1I En, - G112En _k a G- 1/2[G i _ zn," 

j=1 

Using (4.28) in (4.25), we get 
q 

(GEn+l, Enl )h = (GE , L )/- 1 bJ 1L n/2 n, G 12[_, i 

i=l1 
q 

(4.28) ~ ~ k 1,1 EG12_~ Gni G-E2- k _ ansi 

i , j=l 

Since the matrix {m42} is nonnegative definite, we obtain 

q 

n+1 n+1 n+1(~/ ~,~-1[,~ ,i 

(4.29) (E n=E, E )h < (GE , E)h -2kb (En", Z's" - 

i=l1 
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We next estimate the term (En' =n, ) h*. Note that 

N 

(En" E~")h = hZ(U - U,7") (F(Un") -F(Un i)) 
j=1 
n, (iQni~ + -n i [un, iun, i + 

un7iX, 
i -n, 

= 
(f~h funhx _ fuhxxx2 h |hx hxxl~ Ih 11 

Now note that 

-h 
_ 

i,2Uh (G[U' U- u''] U - U2' )h = (GE', E )h. 

Also, using (2.6), (3.3), (3.4), and (3.25), we have 

(4.30) jiUnI ? C(IU llr)* 

Hence, 

(4.31) (E ",~")h < c(GE', E ')h. 

Now for j =1,...,N 

Iy=(F(U )-G[U Ux +UxxxI) 
N 

= h- (f, nif 
n 

+ inx 
i / 

j- 
I 

E(0, 0j)(Un, iUn, 
i 

+ Un, 
i Ih 

1=1 

I-F n fln'1']fln i )*) + (U ,in nf,i = h- {([h -U']Uh, (u uhx + Uhxxx I (j) 

( 4.3 2) - ( ),?j ) (Un u 'Un ' + Unx (1h )} 

N 

h ([ U ]Ux1 /j)-[/) 6/j)(P(X' Un,, D)ni 
1=1 

-B(Pl, "j)un")(lh)] 

where P(x, u's", D) represents the differential operator u "90/Ox + 0 l0x 

and B(q1, qj) = (P(x, un'i, D)01, qj). The term 

N 

h E(q$, q1j)(P(x, uni i, D)un'')(lh) -B(, q)un''(lh) 
1=1 

is precisely the truncation error Fj introduced by Thomee and Wendroff (cf. 

[12, p. 1064]). By Lemma 4.2 of [12], 

(4.33) l~max F1j? < chr. 

(4.33) 1?~~~Ij?N 
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Hence, 
N 

(E i zn, i =, h~ i _ ni) (n, i 

j=1 

(4.34) I (Uhx [Uh -U ], _U -U' -h + Fj(E )j 
j=1 

< 

ljn,ijj0 
jjfnsi 

_ n il lus 
Un,,1 ||+nF| ,| 

Using (4.33), (2.6), (2.5), and (2.3) in (4.34), we get 

(4.35) (Eni, Zn i)Ch2r +c(GE i"E ")h 

Using (4.35) and (4.31) in (4.29), we get 
q 

(4.36) (GE n+ En+ )h < (GEn En)h + ck (GEn i En i) + ckh2r 
i=1 

Since the matrix DA ID I is positive definite, applying a previously used 
diagonalization technique to (4.28) yields via (4.31) and (4.35) 

q 

nG 
i En i)h < C(IGE 5 E )h + ckh 

i=l 

Using this in (4.36) gives (4.20). o 

The main result of this paper now follows. 
0 =S Theorem 4.3. Suppose Uh E Sh satisfies (2.12). Under the hypotheses of Theo- 

rems 4.1 and 4.2, we have 

(4.37) max IIu(tn) -U ni < c(k" + hr) 
0<n<Jh 

for some constant c independent of k and h. 

Proof. Let U(tn+l) denote the N-vector with components u(jh, tn+l), j = 

1, ..., N. Recall that Un = U(tn) here. From (4.20), (4.9), and (2.3), 
(G[U -n*+1 ] Un+1 _ un+1 

+(G[U(t )-Un 1 ] U(t ~) 
_ 

U un) 
+ +1 2GU n+1 n+1 n+1 

=(G[U1 - Uh - Uh )h 

+ ( 1 + k )U(tU+ t +1 ) _ U U~ n+ 1 ] Un+1 )h 

+2(G[~~Utn+ I)_Un+ IUn+I - Uh ~)h 

? (1?+ ck)(G[U(tn)-U ], U(tn)U )h + ckh2r + ck2v+ 
From this it follows that 

(G[U(tn) - Un], U(tn) - )h 

< c(G[U(0) - U], U(0) -U)h + ch + ck2v 
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or 

(4.38) I|uh(tn) - Un ? C -uh(O) -rhU || + C(h + kv), 

where uh(t) is the quasi-interpolant of u(t). (4.37) now follows from (4.38), 
(2.5), and (2.12). o 
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